Estimation of Present and Future Distribution Areas of Greek Juniper (Juniperus excelsa Bieb.) According to Climate Changes Scenarios in GARP Program

Authors

DOI:

https://doi.org/10.53463/splandes.202200145

Keywords:

GARP, Climate Change, Modelling, MIROC6, Juniperus excelsa

Abstract

It is known that global warming caused by climate change will have great effects on species. Determining the extent to which some species belonging to our country will be affected by climate change is very important in terms of planning their use in future studies for these species. In this study, which is based on estimating the extent of the effects of climate change and on species distribution, the current distribution areas and climate data in Turkey are used by using the presence data (presence data) and high-resolution environmental data of Juniperus excelsa. The future projection was modeled using the GARP 1.1.6 program, which uses the genetic algorithm for rule set generation, according to the scenarios developed depending on the change.In the modeling, 19 bioclimatic variables created by using the MIROC6 (Model for Interdisciplinary Research on Climate) model and using the SSP (Shared Socioeconomic Paths) 4.5 and SSP5 8.5 climate scenarios of the years 2041-2060 and 2081-2100 were used, and it was determined how the spatial and spatial distribution areas of the species would change. .According to the results obtained, Juniperus excelsa.It is seen that suitable areas will increase according to the SSP2 4.5 scenario 2050 and 2090 and SSP5 8.5 scenario 2050 estimation, but will decrease according to the SSP5 8.5 scenario 2090 estimation.

Downloads

Download data is not yet available.

References

Acar, P., & Baykal, N. U. (t.y.). Clımate Change Effects On The Dıstrıbutıon Of Turkısh Salıx Specıes.

Arslan, E. S. (2019). İklim değişimi senaryoları ve tür dağılım modeline göre kentsel yol ağaçlarının ekosistem hizmetleri bağlamında değerlendirilmesi: Robinia pseudoacacia L. örneği. Türkiye Ormancılık Dergisi, 20(2), 142-148.

Arslan, E. S., Akyol, A., Örücü, Ö. K., & Sarıkaya, A. G. (2020). Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Regional Environmental Change, 20(3), 1-13.

Arslan, E. S., Gülçin, D., Sarıkaya, A. G., Ölmez, Z., Gülcü, S., İ̇smail, Ş., & Örücü, Ö. K. (t.y.). Kokulu Ardıç’ın (Juniperus foetidissima Willd.) Günümüz ve Gelecekteki Potansiyel Yayılışının Makine Öğrenmesi ile Modellenmesi. Avrupa Bilim ve Teknoloji Dergisi, (22), 1-12.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological modelling, 222(11), 1810-1819.

Bertrand, R., Lenoir, J., Piedallu, C., Riofrio-Dillon, G., de Ruffray, P., Vidal, C., … Gégout, J.-C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374), 517-520.

Bonizzoni, M., Gasperi, G., Chen, X., & James, A. A. (2013). The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends in parasitology, 29(9), 460-468.

Çoban, H., Örücü, Ö., & Arslan, E. (2020). MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier. Sustainability 12: 2671.

Dağtekin, A. D. (2018). Doğu Kayını (fagus Orientalis) Ağacının Alansal Dağılım Modellemesi: Geçmiş, Günümüz Ve Gelecek. Eurasia Institute of Earth Sciences.

DataOne. (2020). DesktopGarp.

Eliçin, G. (1977). Türkiye Doğal Ardıç (Juniperus L.) Taksonlarının Yayılışları ile Önemli Morfolojik ve Anatomik Özellikleri Üzerinde Araştırmalar. İ. Ü. Yayın No: 2327, O.F. Yayın No: 232

İstanbul

Elith*, J., H. Graham*, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … Lehmann, A. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151.

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315.

Gaston, K. J. (1996). Species richness: Measure and measurement. Biodibersity: A Biology of Numbers and Difference, 77-113.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3), 147-186.

Gülsoy, S., Akdemir, D., Özdemir, S., Aydın, S., & Dalgıç, L. (2014). Göller yöresi boylu ardıç (Juniperus excelsa Bieb.) sahalarında çevresel faktörlerin kozalak fiziksel özellikler üzerine etkisi. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu konferansı dahilinde Akdeniz Ormanlarının Geleceği: Sürdürülebilir Toplum ve Çevre, bildiri kitapçığı, Ekim, 750-762.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.

IPCC. (2013). Definition of terms used within the DDC Pages,. Geliş tarihi gönderen http://www.ipcc-data.org/ guidelines/pages/definitions.html; Retrieved: November 2019

Johns, T., Gregory, J., Ingram, W., Johnson, C., Jones, A., Lowe, J., … Stevenson, D. (2003). Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate dynamics, 20(6), 583-612.

Karacaoğlu, Ç. (2013). Isophya Rızeensıs (Orthoptera: Tettıgonııdae) Türünün Ekolojik Niş Modellemesi.

Kariyawasam, C. S., Kumar, L., & Ratnayake, S. S. (2019). Invasive plants distribution modeling: A tool for tropical biodiversity conservation with special reference to Sri Lanka. Tropical Conservation Science, 12, 1940082919864269.

Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. science, 320(5884), 1768-1771.

Li, Y., Tang, Z., Yan, Y., Wang, K., Cai, L., He, J., … Yao, Y. (2020). Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis. Biodiversity Science, 28, 99-106.

Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490-509.

Milli Eğitim Bakanlığı. (2007). Bahçecilik Cupressaceae Familyası Bitkileri. Ankara.

Oliveira, M., Hamilton, S., Calheiros, D., Jacobi, C., & Latini, R. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70(3), 831-840.

Örücü, Ö. K. (2019). Phoenix theophrasti Gr.’nin iklim değişimine bağlı günümüz ve gelecekteki yayılış alanlarının MaxEnt Modeli ile tahmini ve bitkisel tasarımda kullanımı. Türkiye Ormancılık Dergisi, 20(3), 274-283.

Özdemir, S., Gülsoy, S., & Ahmet, M. (2020). Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142.

Rojas‐Soto, O. R., Martínez‐Meyer, E., Navarro‐Sigüenza, A. G., Oliveras de Ita, A., Gómez de Silva, H., & Peterson, A. T. (2008). Modeling distributions of disjunct populations of the Sierra Madre sparrow. Journal of Field Ornithology, 79(3), 245-253.

Şekercioğlu, Ç. H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö. E., Semiz, G., … Ipekdal, K. (2011). Turkey’s globally important biodiversity in crisis. Biological Conservation, 144(12), 2752-2769.

Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography, 30(4), 550-560.

Türkeş, M. (2008). Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, 1(1), 26-37.

Uzun, A. (2020). İklim Değişimi Senaryolarına Göre Peyzaj Tasarımında Kullanılan Fabaceae Familyasına Ait Bazı Odunsu Türlerin Günümüz Ve Gelecekteki Yayılış Alanlarının Tahmini. Süleyman Demirel Üniversitesi, Isparta.

Uzun, A., & Örücü, Ö. K. (2020). Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Türkiye Ormancılık Dergisi, 21(4), 498-508.

WordClim. (2019). WorldClim-Global Climate Data.

Yaltırık, F, & Akkemik, Ü. (2011). Türkiye’nin doğal gymnospermleri (açık tohumlular). TC Çevre ve Orman Bakanlığı, Orman Genel Müdürlüğü, Duman Ofset.

Yaltırık, Faik, & Efe, A. (2001). Dendroloji Ders Kitabı. Geliş tarihi gönderen http://nek.istanbul.edu.tr:4444/ekos/KITAP/2001-08472.pdf

Zhang, K., Sun, L., & Tao, J. (2020). Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests, 11(5), 525.

Published

06-07-2022

How to Cite

Cardak, Çagil, & Örücü, Ömer K. (2022). Estimation of Present and Future Distribution Areas of Greek Juniper (Juniperus excelsa Bieb.) According to Climate Changes Scenarios in GARP Program. Journal of Spatial Planning and Design, 2(1), 13–24. https://doi.org/10.53463/splandes.202200145